p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.96D4, C25.46C22, C23.383C24, C24.575C23, C22.1862+ (1+4), C23.612(C2×D4), C24⋊3C4.10C2, (C23×C4).95C22, C23.8Q8⋊62C2, C23.305(C4○D4), C23.34D4⋊30C2, C23.11D4⋊25C2, C2.10(C23⋊3D4), (C22×C4).520C23, C22.263(C22×D4), C2.C42⋊25C22, C2.26(C22.45C24), C22.62(C22.D4), (C2×C4⋊C4)⋊20C22, C22.260(C2×C4○D4), (C22×C22⋊C4).13C2, C2.28(C2×C22.D4), (C2×C22⋊C4).461C22, SmallGroup(128,1215)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 756 in 350 conjugacy classes, 108 normal (8 characteristic)
C1, C2, C2 [×6], C2 [×10], C4 [×12], C22, C22 [×14], C22 [×50], C2×C4 [×52], C23, C23 [×14], C23 [×50], C22⋊C4 [×26], C4⋊C4 [×4], C22×C4 [×12], C22×C4 [×20], C24, C24 [×6], C24 [×10], C2.C42 [×12], C2×C22⋊C4 [×14], C2×C22⋊C4 [×8], C2×C4⋊C4 [×4], C23×C4 [×4], C25, C24⋊3C4, C23.34D4 [×4], C23.8Q8 [×4], C23.11D4 [×4], C22×C22⋊C4 [×2], C24.96D4
Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], C2×D4 [×6], C4○D4 [×8], C24, C22.D4 [×8], C22×D4, C2×C4○D4 [×4], 2+ (1+4) [×2], C2×C22.D4 [×2], C23⋊3D4, C22.45C24 [×4], C24.96D4
Generators and relations
G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=1, f2=d, ab=ba, faf-1=ac=ca, ad=da, eae-1=acd, ebe-1=fbf-1=bc=cb, bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=cde-1 >
(2 15)(4 13)(6 30)(8 32)(9 17)(10 23)(11 19)(12 21)(18 28)(20 26)(22 27)(24 25)
(1 31)(2 15)(3 29)(4 13)(5 16)(6 30)(7 14)(8 32)(9 27)(10 23)(11 25)(12 21)(17 22)(18 28)(19 24)(20 26)
(1 7)(2 8)(3 5)(4 6)(9 17)(10 18)(11 19)(12 20)(13 30)(14 31)(15 32)(16 29)(21 26)(22 27)(23 28)(24 25)
(1 31)(2 32)(3 29)(4 30)(5 16)(6 13)(7 14)(8 15)(9 22)(10 23)(11 24)(12 21)(17 27)(18 28)(19 25)(20 26)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 17 31 27)(2 21 32 12)(3 19 29 25)(4 23 30 10)(5 11 16 24)(6 28 13 18)(7 9 14 22)(8 26 15 20)
G:=sub<Sym(32)| (2,15)(4,13)(6,30)(8,32)(9,17)(10,23)(11,19)(12,21)(18,28)(20,26)(22,27)(24,25), (1,31)(2,15)(3,29)(4,13)(5,16)(6,30)(7,14)(8,32)(9,27)(10,23)(11,25)(12,21)(17,22)(18,28)(19,24)(20,26), (1,7)(2,8)(3,5)(4,6)(9,17)(10,18)(11,19)(12,20)(13,30)(14,31)(15,32)(16,29)(21,26)(22,27)(23,28)(24,25), (1,31)(2,32)(3,29)(4,30)(5,16)(6,13)(7,14)(8,15)(9,22)(10,23)(11,24)(12,21)(17,27)(18,28)(19,25)(20,26), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,17,31,27)(2,21,32,12)(3,19,29,25)(4,23,30,10)(5,11,16,24)(6,28,13,18)(7,9,14,22)(8,26,15,20)>;
G:=Group( (2,15)(4,13)(6,30)(8,32)(9,17)(10,23)(11,19)(12,21)(18,28)(20,26)(22,27)(24,25), (1,31)(2,15)(3,29)(4,13)(5,16)(6,30)(7,14)(8,32)(9,27)(10,23)(11,25)(12,21)(17,22)(18,28)(19,24)(20,26), (1,7)(2,8)(3,5)(4,6)(9,17)(10,18)(11,19)(12,20)(13,30)(14,31)(15,32)(16,29)(21,26)(22,27)(23,28)(24,25), (1,31)(2,32)(3,29)(4,30)(5,16)(6,13)(7,14)(8,15)(9,22)(10,23)(11,24)(12,21)(17,27)(18,28)(19,25)(20,26), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,17,31,27)(2,21,32,12)(3,19,29,25)(4,23,30,10)(5,11,16,24)(6,28,13,18)(7,9,14,22)(8,26,15,20) );
G=PermutationGroup([(2,15),(4,13),(6,30),(8,32),(9,17),(10,23),(11,19),(12,21),(18,28),(20,26),(22,27),(24,25)], [(1,31),(2,15),(3,29),(4,13),(5,16),(6,30),(7,14),(8,32),(9,27),(10,23),(11,25),(12,21),(17,22),(18,28),(19,24),(20,26)], [(1,7),(2,8),(3,5),(4,6),(9,17),(10,18),(11,19),(12,20),(13,30),(14,31),(15,32),(16,29),(21,26),(22,27),(23,28),(24,25)], [(1,31),(2,32),(3,29),(4,30),(5,16),(6,13),(7,14),(8,15),(9,22),(10,23),(11,24),(12,21),(17,27),(18,28),(19,25),(20,26)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,17,31,27),(2,21,32,12),(3,19,29,25),(4,23,30,10),(5,11,16,24),(6,28,13,18),(7,9,14,22),(8,26,15,20)])
Matrix representation ►G ⊆ GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 3 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
0 | 0 | 0 | 0 | 3 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,2,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,2,0],[2,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 2P | 2Q | 4A | ··· | 4P | 4Q | 4R | 4S | 4T |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | 4 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | C4○D4 | 2+ (1+4) |
kernel | C24.96D4 | C24⋊3C4 | C23.34D4 | C23.8Q8 | C23.11D4 | C22×C22⋊C4 | C24 | C23 | C22 |
# reps | 1 | 1 | 4 | 4 | 4 | 2 | 4 | 16 | 2 |
In GAP, Magma, Sage, TeX
C_2^4._{96}D_4
% in TeX
G:=Group("C2^4.96D4");
// GroupNames label
G:=SmallGroup(128,1215);
// by ID
G=gap.SmallGroup(128,1215);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,758,723,100,675]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=1,f^2=d,a*b=b*a,f*a*f^-1=a*c=c*a,a*d=d*a,e*a*e^-1=a*c*d,e*b*e^-1=f*b*f^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*d*e^-1>;
// generators/relations